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ABSTRACT 
Deep neural networks (DNNs) are increasing popular in many areas including healthcare, but they are 
difficult to explain. There have been approaches for explaining DNN models which focus on measuring the 
individual variable effects on the outcome. In this study we first develop a method for measuring the 
interactions between covariates in the DNN models, and then we assess the ability of a DNN model in 
detecting the interaction effects using simulation data. 
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1 Introduction 
Deep neural networks (DNNs) have attracted much attention in recent years due to their superior 
performance in a variety of tasks such as computer vision, speech recognition and board game playing [1-3]. 
The application of DNNs to medicine and healthcare quickly followed and has shown some success [4]. 
Despite their increasing popularity, DNN models are very difficult to explain compared to traditional 
statistical models such as linear regression, which is hindering their adoption in many areas including 
healthcare. Therefore, there has been much interest in explaining DNN models. 

Approaches for explaining DNN models include Attention Mechanism [5], Local Interpretable Model-
agnostic Explanations (LIME) [6] and Layer-wise Relevance Propagation (LRP) [7]. In a similar spirit as 
LIME, we have developed a method called impact scores to explain the DNN models [8]. Impact scores 
can measure how individual variables impact on the outcome. It is natural to ask whether DNN models can 
capture interaction effects of two variables and how to measure the interaction effects.  

Covariate interactions are commonly observed in healthcare studies. For example, smoking and exposure to 
asbestos have an interaction effect on predicting the risk of lung cancer [9]. Covariate interactions have 
been well studied in statistics in the context of regression [10], but are less well studied in the context of 
DNN models. Intrator et. al. used graphical tools for detecting and studying the interactions in neural 
network models [11]. In this study, we developed a quantitative method to measure covariate interactions 
and assess the ability of a DNN model in detecting the interaction effects using simulation data. Compared 
to real-world data, simulation data have the advantage that the underlying relationship is known, which 
allows one to evaluate the computed interaction effects against those defined in the underlying relationship. 



	  

	   2	  

2 Methods 
The simulation data are generated as follows. First, we use 100 variables 𝑥!, 𝑥!,… , 𝑥!"" as predictors and a 
binary variable z for two outcomes represented by values 0 and 1 respectively. Among the 100 variables 
the first 50 are binary variables taking values 0/1, and the second 50 are continuous variables taking values 
between 0 and 1. This setting is to resemble the real situation of patient data: some variables such as 
gender, diagnoses, procedures are usually treated as binary variables, while the other variables such as age, 
vital signs, lab results are usually treated as continuous variables. Although the continuous variables may 
have different numerical value ranges in their original form, they can always be normalized to range from 0 
to 1. 

For each variable 𝑥!, we define a reference value representing the baseline status such as “not having a 
disease” or “not taking a medication”. For convenience, we choose 0 as the reference value for all the 
variables. 

We experiment with a nonlinear relationship between the outcome variable 𝑧  and the predictors 
𝑥!, 𝑥!,… , 𝑥!"" . Specifically, randomly sample 3 subsets 𝑖! !!!

!" , 𝑗! !!!
!"  and 𝑘! !!!

!"  of the index set 
[1, 2,… , 100] with 𝑗! ∩ 𝑘! = ∅, and then define a nonlinear relationship by 

logit 𝑝 = 𝑦 = 𝛽! + 𝛽!𝑥!

!""

!!!

+ 𝛾!𝑥!!
!

!"

!!!

+ 𝜃!𝑥!!𝑥!!

!"

!!!

 

where 𝑝 = Prob(𝑧 = 1|𝑥!;𝛽! , 𝛾!, 𝜃!), and logit(𝑝) = ln !
!!!

 is the logit function. This relationship has 20 

square terms and 20 cross-product terms in addition to 100 linear terms. The coefficients 𝛽!’s and 𝛾!’s are 
randomly generated from a uniform distribution with range -1 to 1, and 𝜃!’s are randomly generated from a 
uniform distribution with range -10 to 10. The cross-product terms 𝜃!𝑥!!𝑥!! are the interaction terms and 
𝜃! are the interaction coefficients. Note that for any variable not occurring in the interaction terms, its 
interaction with any other variable is exactly 0. 

After the simulation data are generated, we train a DNN model on the data. The DNN has an architecture as 
follows. It has an input layer of 100 nodes, an output layer with 1 node, and 10 hidden fully-connected 
layers whose numbers of nodes are alternatingly 70 and 50, starting with 70 for the first hidden layer and 
ending with 50 for the last hidden layer. Their nonlinear activation functions are all the rectified linear unit 
(ReLU) function 𝑓 𝑥 = max  (0, 𝑥). The nonlinear activation function for the output layer is the sigmoid 
function 𝜎 𝑢 = 1/(1 + 𝑒!!) so that the DNN outputs a number 𝑝 between 0 and 1 representing the 
predicted probability of the outcome being 1. 

We randomly divide the set of simulation data into 3 subsets: training (60%), validation (20%) and testing 
(20%), and then we train the DNN model on the training set. The weights of the DNN are initialized with 
randomly generated small numbers, and updated using the mini-batched stochastic gradient decent method 
with Nesterov momentum. The mini-batch size is100, learning rate is 0.001 and momentum is 0.9. To 
avoid over-fitting to the training data, we adopted the strategy of early stopping. Specifically, after each 
epoch of training, the trained DNN model is applied to the validation set to measure the area under curve 
(AUC) on it. When the validation AUC reaches a peak point such that there is no improvement over the 
following 10 epochs, we take the DNN model with the peak validation AUC as the final model. This 
effectively makes the training stop at the epoch producing the peak AUC.  

With the final DNN model, we calculate interaction scores as follows. Let 𝑝 = 𝐹(𝑥!,… , 𝑥!"") be the final 
DNN model, and let 𝑓 = logit ∘ 𝐹 , so that logit(𝑝) = 𝑓(𝑥!,… , 𝑥!""). For two variables 𝑥!  and 𝑥! , we 
define the interaction score between them at two levels – the individual (instance) level and the population 
level. The individual-level interaction score on an instance is defined as: 

𝑓 … , 𝑥!! ,… , 𝑥!! ,… − 𝑓 … , 𝑥!! ,… , 𝑥!! ,… − 𝑓 … , 𝑥!! ,… , 𝑥!! ,… + 𝑓(… , 𝑥!! ,… , 𝑥!! ,… )
(𝑥!! − 𝑥!!)(𝑥!! − 𝑥!!)
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where 𝑥!!(resp. 𝑥!!) and 𝑥!!(resp. 𝑥!!) are, respectively, the current and reference values of the variable 
𝑥!(resp. 𝑥!) on the instance, and “…” represents the current values of all other variables than 𝑥! and 𝑥!. Note 
that the individual interaction score is only defined on those instances such that 𝑥!! ≠ 𝑥!! and 𝑥!! ≠ 𝑥!!. 

The population-level interaction score is defined simply as the mean of all the individual-level interaction 
scores on all the instances in the training set such that those scores are defined. Thus the instances on which 
the interaction score is undefined are excluded from the calculation of mean. Note that when interaction 
scores are applied to the nonlinear relationship defined for generating the simulation data, the 
individual/population-level interaction scores are exactly 𝜃! for the 20 pairs of variables 𝑥!! and 𝑥!!, and 
are zero for the rest pairs of variables. This shows the validity of the above definitions. 

The population-level interaction scores calculated using the DNN model, which we call the “predicted 
values”, are compared to the population-level interaction scores calculated on the nonlinear relationship for 
the simulation data, which we call the “true values” or “ground truth”. The closeness between the predicted 
values and true values reflects the capability of the DNN model in detecting the interaction effects in the 
nonlinear relationship. We evaluate the “closeness” with several metrics. First we calculate the mean 
absolute error (MAE) which measures the difference in an absolute sense. For two sequence of values 𝑎! 
and 𝑏!, 𝑖 = 1,… , 𝑛, the MAE is defined as !

!
|𝑎! − 𝑏!|!

!!! . We also calculate the mean absolute predicted 
value (MAPV), and the mean of the absolute true value (MATV). The ratios MAE/MATV and 
MAE/MAPV measure the difference between the predicted values and true values in a relative sense. These 
metrics are calculated on 2 sets of variable pairs separately: 1. the randomly selected 20 pairs (𝑥!! , 𝑥!!), 
whose true values are 𝜃!; 2. the rest of the variable pairs excluding the 20, whose true values are all zero. 

We also calculate the Pearson’s correlation and Spearman’s rank correlation, which measures the 
agreement in relative values and in relative ranks, respectively. Lastly, we calculate the sign agreement. It 
is the proportion of the predicted values which have the same sign as the corresponding true values. 
Different signs of interaction scores indicate the different interaction types. The correlations and sign 
agreements are only calculated on the 20 pairs of variables since they are not applicable on the rest of the 
4930 pairs. 

3 Results 
The trained DNN model has a performance as follows: Training AUC = 0.978, Validation AUC = 0.950, 
Testing AUC = 0.945. 

The population-level interaction scores are calculated based on the trained DNN model, and then compared 
to the population interaction scores based on the nonlinear relationship used for simulating the data. The 
comparison results are shown in Table 1. 

Table 1. Comparison of the interaction scores detected by the DNN model with the 
true interaction scores in the nonlinear relationship. 

 On the 20 variable pairs 
(𝑥!! , 𝑥!!) 

On the rest 4930 variable 
pairs (𝑥! , 𝑥!) 

MAE 3.49 0.08 
MATV 4.85 0 
MAPV 1.36 0.08 
MAE/MATV 0.72 N/A 
MAE/MAPV 2.57 1 
Pearson’s correlation 0.86 N/A 
Spearman’s correlation 0.98 N/A 
Sign agreement 1.0 N/A 
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On the randomly selected 20 variable pairs, the MATV is about 5, which is as expected since 𝜃! are 
randomly sampled from the uniform distribution ranging from -10 to 10. The MAE is about 3.5, quite large 
(72%) compared to MATV, suggesting that the DNN model did not capture the full extent of interactions. 
Although the MAPV is smaller than the MATV on the 20 pairs, it is still much larger than the MAPV on 
the rest 4930 pairs, showing that the DNN model can detect the interaction effects to certain degree. The 
perfect sign agreement on the 20 variable pairs shows that the DNN model actually detect the right 
interaction type, and the high Pearson’s correlation and almost perfect Spearman’s correlation shows that 
the detected interaction effects have a high agreement with the ground truth in relative values and ranks. 

4 Discussions and Conclusion 
In this study, we simulate data that mimic some common situations in healthcare outcome prediction, and 
train a DNN model on the simulation data in order to assess the capability of the DNN model in detecting 
the covariate interactions. The simulation uses an underlying nonlinear relationship with 20 explicit 
interaction terms. The coefficients of the 20 terms are set to have higher magnitude in order to make the 
interaction effects prominent. We define “interaction score” for the DNN model in order to calculate the 
interaction effects captured by the model. When the same interaction score formula is applied to the 
underlying relationship, the exact coefficients of the interaction terms are obtained, showing the validity of 
the interaction score formula. With the simulation data, we know the true values of the interaction effects, 
which served as the ground truth for evaluating capability of the DNN model in detecting the interactions. 
The results show that the DNN model can detect prominent/strong covariate interaction effects, although 
the detected effects are generally smaller than the true effects. 
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