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Computational Health: From Data to Impact
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Patient Similarity Analytics for Precision Cohort

Best Treatment = ?
: Prognosis = ?
sm A Diagnosis = ?

,w” ‘ e

Patient Population Outcomes Analysls

2 : Treatment Comparison
E ], [E ] 5 oo 3 Disease Progression
: :

2 Precision Cohort

— Identify patients who are similar to a given patient of interest in a clinically meaningful way
— Identify a measure of clinical similarity between patients

Approach

— Supervised metric learning

Challenges Addressed
— Patient similarity is context dependent

— Feature dimensionality can be very large

Published in: AMIA 2010, ICDM2010, SDM2011, ICPR2012, AMIA TBI 2014, AMIA CRI 2015




Personalized Predictive Models - T2D Onset Prediction Example

Training
patient data

Similar patient
identification

Personalized
predictive

Risk factor profile
computation

Individual
patient data

Insights for personalized intervention planning

Diabetes patient population is heterogeneous

Traditional predictive modeling approaches only provide
“universal” risk factor identification and ranking

Personalized predictive modeling approach provides patient
specific risk factors and ranking

Clusters of risk factors, and patient risk profiles

Risk Score

AMIA Joint Summit 2015




Temporal Pattern Extraction with Deep Learning from EMR

Temporal patterns and interactions are important features in
predictive modeling in healthcare

Prior methods do not sufficiently address the challenge of
extracting such features from longitudinal patient record
matrices (EHR).

We developed an end-to-end Deep Learning framework

tailored to longitudinal health care data to learn the temporal
pattern and exploit them for risk prediction
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Deep Learning to extract temporal features

Logistic regression for DKD prediction

Profile

Profile + ICD10

Profile + ICD10+ Y]Code

Profile + ICD10 + Blood Tests (latest)

Profile + ICD10 + YJCode
+Blood Tests (latest and longitudinal)

Profile + ICD10 + YJCode
+Blood Tests (latest and longitudinal)
+Urinary Tests (latest and longitudinal)

Profile + ICD10 + YJCode
+Blood Tests (latest and longitudinal)
+Urinary Tests (latest and longitudinal)

+Current Disease + Disease History

Key Findings

v' Additional data categories improve

prediction accuracy

v' The aggravation of urinary protein
observation is strongly affected by
its variance over past 180 days
DKD aggravation group had
significantly higher incidence
rates of Hemodialysis and
Cardiovascular diseases

Percentage of the patients without CVD (%)

Percentage of the patients without hemodialysis (%)

& FUJITA HEALTH UNIVERSITY
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Comprehensive Risk Assessment — Multi-Task Sparse Learning

Goal
— Simultaneously predict multiple risks
— Explore and exploit risk associations

— Identify common and unique risk factors

Use Cases: elder care risk assessment, diabetes complications

- - baseline ROC curve (area = 0.7627)
— LINKAGE ROC curve (area = 0.7966)

04 0.6
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Multi-Task Learning for Diabetes Complications Prediction

Observation '"“?X date Diabetes complication
N of diabetes . N
Index date window prediction window

Observation Diabetes complication

Goal : Predict when a patient will develop

complications after the initial T2DM diagnosis patent 1 _II Tas“«[
— {
{

]
] — x |

Patient 2
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Approach : Multi-task Survival Analysis (ST TR — . R W A

Time

Task 2

Patient 4

Task 3 Patient 4

[ 3 Diabetes Y Retinopathy W Neuropathy AN Vascular Disease

RankSvx: A novel data-driven time-to-event
modeling method
— Accurate prediction of event times, and

[ZA STL-RankSvx
BN MTL-RankSvx

— Ranking of the relative risks among : soor
patients

59.0%

Multi-task RankSvx to simultaneously model ©
multiple complication risks

58.0%

57.0%
— leverage association between different S S LSS y .
diabetes complications M v L

Percentage of dataset

Applied to predictions of retin th RankSvx outperforms traditional survival -
2pllizel D pree EHEns O [Einepe yf models and regression model in CI and MAE HUHRERLE
neuropathy, nephropathy, vascular diseases outperforms STL-

RankSvx
AAAI 2018, IEEE TKDE 2019
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Disease Progression Modeling 5 CHDI NS el ) = e o ouon

FOR PARKINSON’S RESEARCH

GOAL > Provide comprehensive view and deeper understanding of of a disease in terms of characteristics of underlying
disease stages, areas of manifestation and progression pathways

METHOD - Multi-layer probabilistic modeling framework to incorporate data from diverse sources

Initial work on COPD; Work ongoing on enhanced methodologies & application to other conditions, including Huntington’s
(CHDI), T1D (JDRF), PD (MJFF).
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Published in KDD 2014, AMIA 2017, AMIA 2018, JAMIA Open 2019




Huntington’s Disease Progression Modeling

‘Premanifest’ Motor diagnosis  ‘Manifest’

1 Motor
Functional |
abliities | Impalrment
H

comme Challenges in Understanding HD Progression

Chorea

Function (%)
Signs and symptoms (%)

— Disease manifestation along multiple dimensions
o u a s Shodsonrem with complex patterns

o e — Heterogeneous progression pathways
— No clear definitions of disease states

T
i Typical adult onset

100
(normalized)

Natural History of HD (Ross et. at. 2014)

Probabilistic Disease Progression Modeling Clinical Decision

. Support . .
. Incorporate heterogeneous features coming from PP Improved understanding of disease

multiple studies and assessments covering ) ( progression: population/patient

multiple aspects of HD e B Insights into HD clinical assessments and

. . . . sensitivities
Provide comprehensive view of disease states and

the progression of HD through a multi-layer

probabilistic disease progression model - .
Objective baseline

Better understanding of disease sub-types Cohort selection — trial enrichment

Identify factors that are associated with disease Optimizing trial design — trial simulator
progression patterns Clinical

Trial Design

Biomarker discovery




Integrated Huntington’s Disease Progression Model CHDI

Trained on data integrated from four prospective observational studies of HD (~16k Annual transition probabilities through
case, 3k control) successive phenotypes ranges from 5% - 30%

Discovered 9 disease states, over span of ~4 decades (prodromal, transition, manifest) Annual
Highlights (compared to prior-art HD progression indices) Stage Prodromal | Transition Manifest
Capturing multi-faceted manifestation throughout disease progression sete 2234 ’

1 0.0570.0021

Finer characterization, particularly of early states
0.13 0.048 0.013 0.0059

0.15 0.12 | 0.041 0.005
0.1 | 0.15 0.022 0.0026

0.3 0.056 0.0075

Characterization of complex patterns of progression in transition (critical) states

Transition | Prodromal

Individual patient: more nuanced view of state of progression

0.21 0.036 0.0051

0.24 0.048
0.27

Manifest
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—— dyslonia
= chorea
—— ocular : i | i ' ' |

ey ! b . : P T I Visit date (years) State from IHDPM Shoulson and Fahn Stage
~ finger_tap ! ! ! .

——— pronate
—— walking

Table 2. State sequence of an example patient

Premanifest
Premanifest
Premanifest
Premanifest
Premanifest
Premanifest
Premanifest
Premanifest
HD1
HD1
HD1
HD1
HD1
HD2

— somT
— SCNT
—— SWRT
— ST !
~—— Verbal Fluency |
—— MVSE i

—— Occupation
—— finances
—— Chores
— ADL
~—— CareLevel
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Causal Inference for Time Varying Treatment Strategies

Goal > To provide causal estimate of effect of time varying treatments using observational data

Method - G-Computation + hierarchical Bayesian models (post-processing)
Challenges addressed:

Time varying treatment decisions

Outcomes recorded at irregular intervals/varying treatment durations

Multiple related drugs and multiple related outcomes
The G-formula:

EW(@)] = Y Bl =LA = g(B)] [ | plm = tnllms = Tn-2.Apn-y = 9(Tn-1))

[3] m=1:t

model for outcome models for confounders given the past
given the past

Effects of Motor Drugs on Chorea

Treatment Effect
08 06 04 02 00 02

= Any Antipsychotic Motor Drug
=  Olanzapine
= Tiapride

= Risperidone
= Tetrabenazine

AMIA Informatics Summits 2019
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\) THE MICHAEL J. FOX FOUNDATION
g/\\ FOR PARKINSON’S RESEARCH

Modeling of Parkinson’s Disease Progression

Patterns are further confounded
by dopaminergic medication use

Statistical Model © @@ @
O—@—0 ®
@—O——O A

Staging and predictions for new patients as well as visits

AAAI 2019, MLHC 2020




Improve Patient Engagement in Care Management

Engaging patients in interventions that are most effective for patients like them

Objectives
— Help care managers prioritize patients who will be more receptive to
care management interventions.

— Help care managers set behavior goals/interventions based on
intervention effectiveness estimates.

Data
Increase
Care management records (structured + unstructured) 0 ( efficiency of
CM time
Method

investment
Patient similarity, Causal inference,

Key Finding

— Behavior phenotype-based care planning strategies could yield more
effective intervention recommendations for goal attainment compared
to population level strategies.

AMIA 2017, AMIA 2018 (best paper)



AI Trlage NLP Pipeline
. (CNN, Bi-GRU,
. B ] Bi-LSTM)
E n gl n e Encounter
/ | Natural > 18 :
/ 7 Model Creatidh Patient Interaction
- ;?25::5; ’~‘ and Knowledge » and Next-Best d
ion |~ B Base Question
DeCIS 1on ‘ : g‘i';;)ine I ; Auto-creation of
- ontology and
Su ppO I‘t language
g ] agnostic KG
SYSte m fO r Literature & Guidelines

medical triage
to guide
individuals to
the next step
of care

ML models for
next-best-
question and
recommendation

AIDA




Hyperlocal
Case
Prediction

Framework for
hyperlocal
predictions of
COVID-19 cases
using novel
compartmental
models with ML
enhancements

Core data: incidences,
deaths by day, region;
Countermeasures by day,
region;
Geospatial data

Additional data: Testing;
Hospitalization; Claims;
Demographics; "Mobility”;
Comorbidity criteria

MarG2 w09 V16 Mor23 Mwr30 Ax06 A3 K20 K27 MayOd Ny 1 oy 18 Way25 JmO1 AR08 Jn1S A2 dn2) MO

County/State/Country level daily
prediction of cases with uncertainty
under current or what-if conditions

Compartmental
model (SEAIR)
accounting for
asymptomatic
transmission,
NPI and testing

Spatial
Temporal
Clustering

Detection of
Non-
Pharmaceutical
Interventions

Health Security 2019,
MedRxiv 2020, KDD

epiDAMIK 2020
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