

Computational Methods for Next Generation Healthcare

Jianying Hu

IBM Fellow Global Science Leader, AI for Healthcare Director, Center for Computational Health

© 2020 IBM Corporation

Computational Health: From Data to Impact

Patient Similarity Analytics for Precision Cohort

<u>Goal</u>

- Identify patients who are similar to a given patient of interest in a clinically meaningful way
- Identify a measure of clinical similarity between patients

<u>Approach</u>

Supervised metric learning

Challenges Addressed

- Patient similarity is context dependent
- Feature dimensionality can be very large

Published in: AMIA 2010, ICDM2010, SDM2011, ICPR2012, AMIA TBI 2014, AMIA CRI 2015

Personalized Predictive Models - T2D Onset Prediction Example

Insights for personalized intervention planning

- ✓ Diabetes patient population is heterogeneous
- Traditional predictive modeling approaches only provide "universal" risk factor identification and ranking
- Personalized predictive modeling approach provides patient specific risk factors and ranking
- \checkmark Clusters of risk factors, and patient risk profiles

AMIA Joint Summit 2015

Temporal Pattern Extraction with Deep Learning from EMR

- Temporal patterns and interactions are important features in predictive modeling in healthcare
- Prior methods do not sufficiently address the challenge of extracting such features from longitudinal patient record matrices (EHR).
- We developed an end-to-end Deep Learning framework tailored to longitudinal health care data to learn the temporal pattern and exploit them for risk prediction

Disease Onset Prediction Results (AUC)

	CHF	COPD
Baseline (Random Forest)	0.7156	0.6624
Deep Learning (Slow-Fusion Convolutional Neural Network)	0.7675	0.7388

^{© 2020} IBM Corporation

Diabetic Kidney Disease Prediction

Features	AUC	Accuracy
Profile	0.562	0.548
Profile + ICD10	0.562	0.557
Profile + ICD10 + YJCode	0.613	0.594
Profile + ICD10 + Blood Tests (latest)	0.644	0.606
Profile + ICD10 + YJCode +Blood Tests (latest and longitudinal)	0.656	0.610
Profile + ICD10 + YJCode +Blood Tests (latest and longitudinal) +Urinary Tests (latest and longitudinal)	0.729	0.691
Profile + ICD10 + YJCode +Blood Tests (latest and longitudinal) +Urinary Tests (latest and longitudinal) +Current Disease + Disease History	0.743	0.701

Impact of data coverage on performance

Key Findings

- Additional data categories improve prediction accuracy
- The aggravation of urinary protein observation is strongly affected by its variance over past 180 days
- DKD aggravation group had significantly higher incidence rates of Hemodialysis and Cardiovascular diseases

Survival analysis for hemodialysis

Survival analysis for CVD

© 2020 IBM Corporation

Comprehensive Risk Assessment – Multi-Task Sparse Learning

Goal

- Simultaneously predict multiple risks
- Explore and exploit risk associations
- Identify common and unique risk factors

Use Cases: elder care risk assessment, diabetes complications

Improved Prediction Accuracy

Identify Association Among Risks

KDD 2015

Multi-Task Learning for Diabetes Complications Prediction

Goal : Predict *when* a patient will develop complications after the initial T2DM diagnosis

Approach : Multi-task Survival Analysis

- RankSvx: A novel data-driven time-to-event modeling method
 - Accurate prediction of event times, and
 - Ranking of the relative risks among patients
- Multi-task RankSvx to simultaneously model multiple complication risks
 - leverage association between different diabetes complications
- Applied to predictions of retinopathy, neuropathy, nephropathy, vascular diseases

RankSvx outperforms traditional survival models and regression model in CI and MAE

MTL-RankSvx outperforms STL-RankSvx

AAAI 2018, IEEE TKDE 2019

Disease Progression Modeling

- GOAL → Provide comprehensive view and deeper understanding of of a disease in terms of characteristics of underlying disease stages, areas of manifestation and progression pathways
- METHOD → Multi-layer probabilistic modeling framework to incorporate data from diverse sources
- Initial work on COPD; Work ongoing on enhanced methodologies & application to other conditions, including Huntington's (CHDI), T1D (JDRF), PD (MJFF).

Published in KDD 2014, AMIA 2017, AMIA 2018, JAMIA Open 2019

Huntington's Disease Progression Modeling

Probabilistic Disease Progression Modeling

- Incorporate heterogeneous features coming from multiple studies and assessments covering multiple aspects of HD
- Provide comprehensive view of disease states and the progression of HD through a multi-layer probabilistic disease progression model
- Better understanding of disease sub-types
- Identify factors that are associated with disease progression patterns

Challenges in Understanding HD Progression

- Disease manifestation along multiple dimensions with complex patterns
- Heterogeneous progression pathways
- No clear definitions of disease states

Clinical Decision

Support

Clinical Trial Design

- Improved understanding of disease progression: population/patient
- ✓ Insights into HD clinical assessments and sensitivities
- ✓ Objective baseline
- ✓ Cohort selection trial enrichment
- Optimizing trial design trial simulator
- ✓ Biomarker discovery

Integrated Huntington's Disease Progression Model

- Trained on data integrated from four prospective observational studies of HD (~16k case, 3k control)
- Discovered 9 disease states, over span of ~4 decades (prodromal, transition, manifest)
- Highlights (compared to prior-art HD progression indices)
 - Capturing multi-faceted manifestation throughout disease progression
 - Finer characterization, particularly of early states
 - Characterization of complex patterns of progression in transition (critical) states
 - Individual patient: more nuanced view of state of progression

Population view of multiple aspects of disease progression of HD

Annual transition probabilities through successive phenotypes ranges from 5% - 30%

Annual

Stage		Prod	Iromal	Transition		Manifest				
	State	1	2	3	4	5	6	7	8	9
romal	1	0.93	0.057	0.0021						
Prod	2		0.81	0.13	0.048	0.013	0.0059			
u	3			0.68	0.15	0.12	0.041	0.005		
siti	4				0.72	0.1	0.15	0.022	0.0026	
Tran	5					0.63	0.3	0.056	0.0075	
st	6						0.75	0.21	0.036	0.0051
life	7							0.72	0.24	0.048
Aar	8								0.73	0.27
	9									1

Table 2. State sequence of an example patient

Visit date (years)	State from IHDPM	Shoulson and Fahn Stage
0	2	Premanifest
1.1	2	Premanifest
2.1	2	Premanifest
3.5	2	Premanifest
4.2	2	Premanifest
5.7	2	Premanifest
6.6	3	Premanifest
7.5	3	Premanifest
8.9	3	HD1
10.3	4	HD1
11.4	4	HD1
11.8	4	HD1
13.6	5	HD1
14.7	6	HD2

Causal Inference for Time Varying Treatment Strategies

- Goal \rightarrow To provide causal estimate of effect of time varying treatments using observational data
- Method \rightarrow G-Computation + hierarchical Bayesian models (post-processing)
- Challenges addressed:

٠

- Time varying treatment decisions
- Outcomes recorded at irregular intervals/varying treatment durations
- Multiple related drugs and multiple related outcomes

The G-formula:

$$E[Y_t(g)] = \sum_{\{\overline{l}_t\}} E[Y_t|\overline{L}_t = \overline{l}_t, \overline{A}_t = g(\overline{l}_t)] \prod_{m=1:t} p(L_m = l_m | \overline{L}_{m-1} = \overline{l}_{m-1}, \overline{A}_{\{m-1\}} = g(\overline{l}_{m-1}))$$
model for outcome models for confounders given the past
$$Effects of Motor Drugs on Chorea$$

Two Years

Treatment Duration

One Year

Modeling of Parkinson's Disease Progression

Challenges in Understanding PD Progression

Probabilistic Disease Progression Modeling

- Incorporate many clinical measures of PD
- Use control cases to subtract away non-PD effects (e.g. aging)
- Use input-outcome HMM approach to train personalized Medication Aware progression models

Staging and predictions for new patients as well as visits

AAAI 2019, MLHC 2020

Improve Patient Engagement in Care Management

Engaging patients in interventions that are most effective for patients like them

Objectives

- Help care managers prioritize patients who will be more receptive to care management interventions.
- Help care managers set behavior goals/interventions based on intervention effectiveness estimates.

Data

Care management records (structured + unstructured)

Method

Patient similarity, Causal inference,

Key Finding

 Behavior phenotype-based care planning strategies could yield more effective intervention recommendations for goal attainment compared to population level strategies.

AMIA 2017, AMIA 2018 (best paper)

AI Triage Engine Decision support system for medical triage to guide individuals to the next step of care

Medical triage tool deployed by a telemedicine service provider in Switzerland

Hyperlocal Case Prediction

Framework for hyperlocal predictions of COVID-19 cases using novel compartmental models with ML enhancements

Thank You !

