COVID-19 Natural History of Severe Disease

Edward J Schenck MD MS J P Smith Clinical Scholar Assistant Professor of Clinical Medicine Pulmonary and Critical Care Weill Cornell Medicine 8-24-2020

Weill Cornell Medicine

@edschenck

Central questions in severe COVID-19

Modern critical care involves supporting failing organs to allow for recovery.

Therapy also targets specific pathogens and the non-specific inflammatory response (steroids).

Can we better understand the natural history of severe COVID-19?

Weill Cornell Medicine

Weill Cornell Medicine

Does baseline severity of COVID-19 respiratory failure predict outcomes?

Summary of ventilator data of 260 patients admitted to WCM with respiratory failure treated with mechanical ventilation

Schenck et al Ann Am Thorac Soc 2020

Ventilator Parameters by Status, Day 1				
Characteristic	Deceased, N = 90 ⁴	Discharged, N = 170 ⁴	p-value ²	q-value ³
PCO2 Arterial	46 (38, 52)	44 (38, 52)	0.5	0.8
PO2 Arterial	92 (75, 121)	93 (74, 130)	>0.9	>0.9
Minute Volume Exhaled	9.80 (8.33, 11.80)	9.30 (8.15, 11.35)	0.4	0.7
PEEP	10.0 (9.0, 12.0)	10.0 (8.5, 12.0)	0.3	0.6
Tidal Volume	450 (400, 500)	450 (400, 500)	0.8	>0.9
Peak Inspiratory Pressure	31.0 (25.0, 35.0)	30.0 (26.0, 34.8)	0.6	0.8
Plateau Pressure	26.0 (22.0, 30.0)	24.5 (21.0, 28.0)	0.2	0.6
PF Ratio	105 (84, 137)	117 (86 , 160)	0.086	0.5
Tidal Volume / PBW	6.92 (6.24, 7.70)	7.06 (6.36, 8.31)	0.2	0.6
Static Compliance	28 (23, 36)	29 (22, 40)	0.4	0.7
Driving Pressure	15.0 (12.0, 18.2)	14.0 (11.0, 16.5)	0.065	0.5
Ventilatory Ratio	1.93 (1.51, 2.32)	1.80 (1.47, 2.30)	0.6	0.8

Schenck et al Ann Am Thorac Soc 2020

Plateau Pressure

Non-pulmonary severe COVID-19

Intubation → ARDS (26.3%)

Myocardial infarction (4.7%)

Stroke (2.3%)

Thromboembolic events (7%)

Renal failure (7%)

Weill Cornell Medicine

Merkler et al JAMA Neurology 2020 Goyal et al Ann Intern Med 2020 Goyal et al NEJM 2020 Gupta et al JAMA Intern Med 2020

Additive organ dysfunction predicts poor outcomes

Weill Cornell Medicine

Gupta et al JAMA Intern Med 2020

Organ Failure Subphenotyping

Two staged evaluation of organ dysfunction trajectory

Su et al medrxiv 2020

- NewYork-Presbyterian

SOFA based grouping by number of failing organs

Su et al medrxiv 2020

There are distinct worsening and recovering subphenotypes

A NYP-WCM cohort

Su et al **medrxiv** 2020

- NewYork-Presbyterian

Trajectory predicts outcomes

A NYP-WCM cohort Mild group Intermediate group Severe group 1.0 0.8 Proportion of patients ⁰
⁰
⁹ WA WA RA WA *** ** RA RA WE WE ----- WE *** *** RE RE 0.2 0.0 25 0 10 15 20 30 10 15 20 25 30 0 10 15 20 25 30 5 0 5 5 Day post-intubation Day post-intubation Day post-intubation

Su et al medrxiv 2020

- NewYork-Presbyterian

Summary and questions

Pulmonary and non-pulmonary organ dysfunction is important in COVID-19 critical illness.

Additive non-improving organ failure drives outcomes.

Are there specific treatments for pulmonary and non-pulmonary organ dysfunction in COVID-19 to prevent progression?

Can we identify and modulate dynamic COVID-19 inflammatory states in real time? @feiwang03

Weill Cornell Medicine

@edschenck