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The Mount Sinai Health System (MSHS)



The Epicenter of the COVID-19 Pandemic in the United States
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•Demographics
•Medical history
•Vital signs
•Diagnoses
•Medications
•Treatment plans
•Immunization history
•Radiology images
•Laboratory results

Wei-Qi, W. & Denny, J.C. Genome Medicine, 2015.

Data contained in EHR



Mount Sinai COVID Informatics Center 
Fighting Covid-19 with the Power of Data
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Critical Informatics Consultation Service 
provides MSHS clinicians and researchers 
easy-to-digest answers to pressing clinical 
questions within 24 hours

Rapid Clinical Intervention Toolkit 
facilitates the practice of evidence-based 
medicine in the MSHS by feeding insights 
from data science into the daily workflow via 
the electronic medical record

Infrastructure supported by Microsoft 
Azure cloud computing services, MSCIC 
has built and maintains a ground truth 
harmonized dataset that integrates data 
streams from MSHS clinical data (e.g. EHR, 
Imaging, Pathology) along with novel 
research data sets (e.g. –omics, digital 
health tracking, immune biomarkers)

Centralized Engineering Core 
A team of highly trained computer 
scientists, engineers, informaticists, and 
researchers who are dedicated to 
productizing this Informatics Crisis 
Response Platform to enable MSHS to be 
battle ready in this and in future crises

Informatics Crisis Response Platform
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MSCIC Data Platform



ASSOCIATION OF ANTICOAGULATION WITH 
MORTALITY
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Retrospective Prospective
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Benjamin Glicksberg



Performance at MSH (train + CV)

Sulaiman Somani, BS
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External and temporal performance (validation)
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What did the model learn?
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Interactions between features can further reveal what the model learned

Sulaiman Somani, BS



SARS-CoV-2 is Devastating to Numerous 
Organ Systems



AKI Stages: Overall and ICU Admissions
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20% of AKI 
had acute 
dialysis
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Objective: To Evaluate 
Approaches for predicting the 
Need for Acute Hemodialysis over 
a variety of time horizons using 
data from <24 hours of admission
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Study Workflow
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Internal Validation External Validation

AUROC AUPRC AUROC AUPRC
Horizon: 1 day
LASSO 0.85 0.24 0.82 0.17
Logistic Regression 0.88 0.29 0.81 0.13
Random Forest 0.91 0.30 0.89 0.23
XGBoost (imputed) 0.93 0.34 0.91 0.30
XGBoost (not-
imputed)

0.96 0.55 0.96 0.37

Horizon: 3 days
LASSO 0.86 0.28 0.84 0.25
Logistic Regression 0.86 0.30 0.82 0.19
Random Forest 0.89 0.39 0.83 0.26
XGBoost (imputed) 0.92 0.42 0.87 0.33
XGBoost (not-
imputed)

0.94 0.57 0.89 0.44

Performance Characteristics  of Models over Time 
Horizons
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Internal Validation External Validation

AUROC (95% CI) AUPRC (95% CI) AUROC AUPRC
Horizon: 5 days
LASSO 0.86 0.38 0.83 0.26
Logistic Regression 0.86 0.33 0.81 0.21
Random Forest 0.87 0.40 0.80 0.26
XGBoost (imputed) 0.87 0.43 0.86 0.32
XGBoost (not-
imputed)

0.89 0.52 0.89 0.46

Horizon: 3 days
LASSO 0.84 0.39 0.84 0.27
Logistic Regression 0.84 0.35 0.81 0.22
Random Forest 0.85 0.37 0.81 0.25
XGBoost (imputed) 0.85 0.40 0.87 0.31
XGBoost (not-
imputed)

0.89 0.54 0.89 0.43

Performance Characteristics  of Models over Time 
Horizons
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Model Explainability and Features
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